作者:夏金凤 字数:2594 点击:

摘 要:在一片晶圆上,通常有几百个至数千个芯片连在一起。它们之间留有80um至150um的间隙,此间隙被称之为划片街区(Saw Street)。将每一个具有独立电气性能的芯片分离出来的过程叫做划片或切割(Dicing Saw)。目前,,机械式金刚石切割是划片工艺的主流技术。在这种切割方式下,金刚石刀片(Diamond Blade)以每分钟3万转到4万转的高转速切割晶圆的街区部分,同时,承载着晶圆的工作台以一定的速度沿刀片与晶圆接触点的切线方向呈直线运动,切割晶圆产生的硅屑被去离子水(DI water)冲走。

关键字:晶圆;划片;切割;金刚石

1 影响晶圆划片质量的重要因素

划片工具,材料及划片参数

划片工具和材料主要包括:划片刀(Dicing blade)、承载薄膜(Mounting tape)。划片参数主要包括:切割模式、切割参数(步进速度、刀片转速、切割深度等)。对于由不同的半导体工艺制作的晶圆需要进行划片工具的选择和参数的优化,以达到最佳的切割质量和最低的切割成本。

2 晶圆划片重要因素的选择

2.1 划片刀的选择

划片刀又称金刚石划片刀,包含三个主要元素:金刚石颗粒的大小、密度和粘结材料。金刚石颗粒在晶圆的切割过程中起着研磨剂的作用,通常是由CBN(Cubic Boron Nitride)合成而来。金刚石颗粒尺寸从2um到8um之间变化。为达到更好的切割质量,通常选用带棱角的金刚石颗粒。金刚石颗粒的密度代表着金刚石颗粒占金刚石刀片的体积比。通常划片刀片供应商都会提供不同的金刚石颗粒密度以适应不同的应用场合。金属镍被用作粘结剂,将金刚石颗粒粘结在一起。

划片刀的选择一般来说要兼顾切割质量、切割刀片寿命和生产成本。金刚石颗粒尺寸影响划片刀的寿命和切割质量。较大的金刚石颗粒度可以在相同的刀具转速下,磨去更多的硅材料,因而刀具的寿命可以得到延长。然而,它会降低切割质量(尤其是正面崩角和金属/ILD得分层)。所以,对金刚石颗粒大小的选择要兼顾切割质量和制造成本。

金刚石颗粒的密度对切割质量的控制也十分关键。对于相同的金刚石颗粒大小但具有不同密度的刀片,划片刀每一个旋转周期移去的硅材料是相同的,但是,平均到每一个金刚石颗粒移去的硅材料的量是不同的。实验发现,高密度的金刚石颗粒可以延长划片刀的寿命,同时也可以减少晶圆背面崩角。而低密度的金刚石颗粒可以减少正面崩角。硬的粘结材料可以更好地“固定”金刚石颗粒,因而可以提高划片刀的寿命,而软的粘结材料能够加速金刚石颗粒的“自我锋利”(Self Sharpening)效应,令金刚石颗粒保持尖锐的棱角形状,因而可以减小晶圆的正面崩角或分层,但代价是划片刀寿命的缩短。刀锋的长度应根据晶圆的厚度,承载薄膜的厚度,最大允许的崩角的尺寸来进行定义,刀锋不能选得过长,因为长的刀锋会在切割时引起刀片的摆动,会导致较大的崩角。

2.2 承载薄膜的选择

承载薄膜(Mounting Tape)在开始划片前粘贴在晶圆的背面,用来在完成划片工艺后,将已相互分离的芯片仍然固定在薄膜上以便于自动粘片机(Die Bonder)完成粘片工序。薄膜的粘度对划片切割质量来说是一个重要特性。实验证明,较高的薄膜与硅片的粘结力可以有效地减低晶圆背面的崩角。另一方面,在粘片工艺中,又希望薄膜与硅片之间的粘接力尽可能小,这样粘片工艺才可以获得一个稳健的工艺窗口,以避免顶起针(Ejector Pin)设置过高或者拾片时间(Pick up time)设置过长造成潜在的芯片断裂及生产效率降低的问题。

为了兼顾划片和粘片两个工序,紫外光敏薄膜(UV Tape)被选用作为晶圆的承载薄膜。UV薄膜的一个显著特点是它与硅片的粘接力在未经紫外光照射前非常高,可达16000mN/25mm,而在经过紫外光照射后粘结力显著下降,可至600mN/25mm。UV照射前后粘结力变化了25倍。UV薄膜的这种性质很好的兼容了划片和粘片对质量的控制。

2.3 划片模式的选择

划片机一般提供两种切割模式,单刀切割(Single Cut)和台阶式切割(Step Cut),它们之间的区别如图7所示。实验证明,划片刀的设计不可能同时满足正面崩角、分层及背面崩角的质量控制的要求。这个结论对于晶圆厚度大于7 mil的低k晶圆尤为适用。为了减小正面金属层与ILD层的分层,薄划片刀会被优先采用,若晶圆较厚,则需选取刀锋较长的刀片。 但须注意,具有较高刀锋/刀宽比的划片刀在切割时会产生摆动,反而会造成较大的正面分层及背面崩角。

台阶式切割使用两个划片刀,第一划片刀较厚,依程序切入晶圆内某一深度,第二划片刀较薄,它沿第一划片刀切割的中心位置切透整个晶圆并深入承载薄膜的1/3厚度。台阶式切割的优点在于:减小了划片刀在切割过程中对晶圆施加的压力;减少了必须使用较高的刀高/刀宽比的划片刀所带来的机械摆动和严重的崩角问题;提供了选择不同类型的划片刀的可能性来分别优化正面崩角/分层及背面崩角。

2.4 划片冷却水的添加剂

在划片机冷却水中添加某些化学添加剂,能够有效地降低水在晶圆/划片刀的表面张力,从而消除了晶圆切割产生的硅屑及金属颗粒在晶圆表面和划片刀表面的堆积, 清洁了芯片表面,并减少了芯片的背部崩角。 这些硅屑和金属碎屑的堆积是造成芯片焊线区(Bonding Pad)的污染和晶圆背部崩角的一个主要原因。因此,当优化划片刀和划片参数无法消除芯片背部崩角时,可以考虑划片冷却水的添加剂。

2.5 划片工艺参数的优化

在确定了划片刀,承载薄膜及切割模式的设计与选择之后,下一步就是通过对划片工艺参数的优化来进一步减小,降低低晶圆的划片缺陷。根据先前实验结果和对划片工艺参数的筛选,三个重要的工艺参数被选中进行工艺优化,包括划片刀转速、工作台步进速度和第一划片刀切割深度。

参考文献

[1]翟焕春,赵东杰,占志斌. 单晶硅棒切方专用金刚石外圆切割片技术要求及制造工艺探讨[A].2008.6.

[2]陈咏旭,李艳丽,占志斌. 工业金刚石[M].2010.6.

[3]占志斌,王春芳,翟焕春. 多晶硅锭专用金刚石环形带锯条的制造工艺研究[A].2009.10.